Research Article

Synthesis of ¹³C-labelled tetramethyltetraselenafulvalene

Jørn B. Christensen^{1,*}, Klaus Bechgaard² and Gael Paquignon³

¹ Laboratory for Materials Science, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark ² Condensed Matter Physics and Chemistry Department, Risø National Laboratory, DK-4000 Roskilde, Denmark ³ DRFMC/SPSMS-LCP, CEA-CENG, 17 av. des Martyrs, 38054 Grenoble, France

Summary

The synthesis of tetramethyltetraselenafulvalene (4,4',5,5'-tetramethyl $\Delta^{2,2'}$ -bis-1,3-diselenole) doubly labelled with carbon-13 in the 2 and 2'-positions is described. Copyright © 2001 John Wiley & Sons, Ltd.

Key Words: Heterocyclic selenium compounds; Organic superconductors; ¹³C-labelling; Carbondiselenide; TMTSF; 4,5-dimethyl-1,3-diselenole-2-selone

Introduction

The radical cation salts of tetramethyltetraselenafulvalene (TMTSF) are a fascinating class of materials, where solid state physics phenomena such as metallic conductivity, superconductivity and spin density waves (SDW) can be observed within an isostructural class of salts $(TMTTF)_2^+ X^-$ and $(TMTSF)_2^+ X^-$ depending on the nature of the anion, temperature, applied pressure, and applied magnetic or electrical fields.^{1–10}

*Correspondence to: J. B. Christensen, Laboratory for Materials Science, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

Contract/grant sponsor: CEA-Grenoble

Copyright © 2001 John Wiley & Sons, Ltd.

Received 21 May 2001 Revised 5 September 2001 Accepted 12 September 2001

Results and discussion

In order to perform ¹³C-NMR experiments on $(TMTSF)_2^+ClO_4^-$ in the superconducting solid state access to ¹³C-labelled TMTSF was needed. Our earlier synthetic work¹¹ had been directed towards partially labelled material, in order to avoid unwanted intra stack ¹³C–¹³C couplings and the synthesis of TMTSF partially ¹³C-labelled in the 2-position was based on ¹³C-labelled *N*,*N*-dimethylphosgeneiminium chloride, which was prepared from ¹³CS₂. TMTSF obtained by this method might contain traces of sulphur as an impurity, which would affect the superconducting properties of the labelled (TMTSF)₂⁺ClO₄⁻. Therefore, we had to develop the present synthesis shown in Scheme 1.

The synthesis is a ¹³C-version of one of the published methods.^{12,13} Our synthesis starts from ¹³CH₂Cl₂, which is converted to ¹³CSe₂ by

Scheme 1. Synthetic Procedure (*denotes ¹³C)

Copyright © 2001 John Wiley & Sons, Ltd.

J Labelled Cpd Radiopharm 2001; 44: 1035-1041

Figure 1. Experimental set-up for the synthesis

reaction with elemental Se in the gaseous phase. The conditions for this reaction had to be carefully studied, because the existing procedures for the synthesis of CSe_2 are all based on the use of a large excess CH_2Cl_2 and operate on up to a 500 g (of CSe_2) scale.^{14–16} We decided to optimize the synthesis on a stochiometric scale using 4.00 g (46.6 mmol) of ¹³CH₂Cl₂ and 8.0 g (101 mmol) Se. The experimental set-up used is shown in Figure 1.

Experiments showed, that the crucial parameter for obtaining a good yield of CSe_2 is the rate of addition of CH_2Cl_2 , and after some experimentation, the present delivery system was developed. It consists of a syringe with a short needle, and allows a slow addition of $^{13}CH_2Cl_2$ driven by its vapour pressure. The $^{13}CH_2Cl_2$ is vaporized in the heated flask and swept into the oven by a slow stream of Ar, where the reaction with Se takes place. The products are collected in a cold trap kept at $-60^{\circ}C$. In order to avoid the problems associated with distillation of the toxic and very bad-smelling CSe_2 , the condensate was dissolved in pentane, filtered to remove elemental Se, and converted directly to the piperidinium 1-piperidino diselenocarbamate needed for the synthesis.

Copyright © 2001 John Wiley & Sons, Ltd. J Labelled Cpd Radiopharm 2001; 44: 1035-1041

Experimental

Piperidinium 1-piperidine [^{13}C] diselenocarbamate (<u>1</u>)

Selenium powder (8 0 g; 101 mmol) was spread in the pyrolysis tube in the part of the tube placed in oven #1. The system was assembled, and a stream of Ar was passed through for 30 min in order to remove any oxygen. A NaOH-scrubber was included at the outlet from the system in order to remove any traces of H₂Se and CSe₂. The Ar-flow was adjusted to approximately 25 bubles/10s measured at the NaOH-scrubber. The ovens and the oil bath were turned on, and a syringe containing the ¹³CH₂Cl₂ was placed in the septum of the inlet system, when the temperatures were the following: 580°C in the long oven, 600°C in the short oven and approximately 120°C in the oil bath. The addition of ¹³CH₂Cl₂ works largely by itself due to the high vapour pressure of CH₂Cl₂, but occasionally some limited warming of the syringe was necessary. The addition took 1.5 h, and after the addition was complete, the flow and heating continued for further a 30 min in order that all ¹³CSe₂ was removed from the ovens and into the cold trap. The system was allowed to cool down to room temperature in an Ar-stream, and the yellow-black suspension in the cold trap was diluted with pentane (500 ml in total) and filtered through a paper filter into a flask. Piperidine (8.0 g; 94 mmol) dissolved in pentane (100 ml) was added with stirring to the solution of crude ¹³CSe₂ whilst keeping the temperature at 0° C. The yellow precipitate of 1 was filtered and dried in vacuum. Yield: 5.21 g (33%). ¹H-NMR (400 MHz; D₂O) δ: 4.33 (m; 4 H); 3.11 (m; 4 H); 1.72 (m; 4 H); 1.63 (m; 8 H). ¹³C-NMR (100 MHz; D₂O) δ : 194.43 (¹³C-Se satellite coupling); 193.48 (¹³C-Se); 192.52 (¹³C-Se satellite coupling); 56.63; 44.48; 25.44; 23.40; 22.19; 21.44. HRMS (EI): m/z: calculated for C₅¹³CH₁₀NSe₂: 257.9258 (M⁺); found: 257.9236.

1-Piperidine $[{}^{13}C]$ carbodiselenoic acid, 1-methyl-2-oxopropyl ester (2).

Compound <u>1</u> (5.0 g; 16 mmol) was dissolved in degassed DMF (50 ml). Freshly distilled 3-chloro-2-butanone (2.0 g; 19 mmol) was added, and the mixture was stirred at room temperature for 1 h. The mixture was poured into ether (100 ml) and washed with water (150 ml). The organic phase was dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give crude <u>2</u>. Yield: 4.9 g (99%). An analytical sample was purified by crystallization from cyclohexane. ¹H-NMR (250 MHz;

Copyright © 2001 John Wiley & Sons, Ltd. J Labelled Cpd Radiopharm 2001; 44: 1035-1041

CDCl₃) δ : 5.21 (m; 1 H); 4.54 (m; 1 H); 4.42 (m; 1 H); 3.86 (m; 2 H); 2.37 (s; 3 H); 1.63 (broad s; 6 H); 1.62 (t, J = 7 Hz; 3 H). ¹³C-NMR (63 MHz; CDCl₃) δ : 194.34 (¹³C–Se satellite coupling); 193.66 (¹³C–Se satellite coupling); 192.47 (¹³C = Se); 191.29 (¹³C–Se satellite coupling); 190.61 (¹³C–Se satellite coupling); 160.69; 58.66; 58.49; 55.48; 28.15; 25.99; 25.29; 23.90; 16.19. δ : HRMS (EI): m/z: calculated for C₉ ¹³CH₁₇NOSe₂: 327.9677 (M⁺); found: 327.9633.

$2-(1-Piperidinium)-2-[^{13}C]-4,5-dimethyl-1,3-diselenole$ hexafluorophosphate (<u>3</u>)

The crude diselenocarbamate (2) (4.7 g; 15 mmol) was added to cold, concentrated H₂SO₄ (100 ml) with stirring at such a rate that the temperature in the mixture was kept below 0°C. After the addition was complete, the mixture was stirred in an ice bath for 1 h, and poured onto crushed ice (500 ml) containing 60% aqueous HPF₆-solution (25 mL). The precipitated product was filtered, washed with water and dissolved in CH₂Cl₂. The organic phase was separated, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo* to give crude **3** (5.9 g; 86%). An analytical sample was purified by precipitation from CH₂Cl₂ with ether. ¹H-NMR (400 MHz; CDCl₃) δ : 3.75 (m; 6 H); 2.29 (m; 4 H); 1.92 (m; 4 H); 1.77 (m; 2 H). ¹³C-NMR (100 MHz; CDCl₃) δ : 189.51 (¹³C–Se satellite coupling); 188.70 (¹³C–N⁺); 187.90 (¹³C–Se satellite coupling); 133.11; 60.12; 25.09; 21.00; 15.60; 15.57. (HRMS (EI): *m/z*: calculated for C₉ ¹³CH₁₆NSe₂: 310.9649 (M⁺); found: 310.9659.

$2-[^{13}C]-4,5$ -Dimethyl-1,3-diselenole-2-selone ($\underline{4}$)

To a stirred suspension of selenium powder (1.1 g;. 14 mmol) in EtOH (50 ml) was added NaBH₄ (0.8 g; 21 mmol) in small portions (extensive foaming observed) to give a clear solution. Acetic acid (0.80 ml; 0.84 g; 14 mmol) was added followed at once by addition of compound <u>3</u> (5.0 g; 11 mmol). The clear solution turned red immediately, and stirring was continued for 30 min. The mixture was poured into water and filtered. The crude <u>4</u> was dissolved in CH₂Cl₂ and dried over anhydrous MgSO₄, filtered and concentrated in vacuo. The crude selone was crystallized from toluene to give <u>4</u> (1.92 g; 53%). ¹H-NMR (250 MHz; CDCl₃) δ : 2.26 (s; 6 H). ¹³C-NMR (63 MHz; CDCl₃) δ : 220.96 (¹³C–Se satellite coupling); 208.36 (¹³C–Se satellite coupling); 207.89 (¹³C–Se satellite coupling); 206.47 (¹³C=Se); 205.06 (¹³C–Se satellite coupling); 204.59

 $(^{13}C-Se \text{ satellite coupling})$; 188.86 $(^{13}C-Se \text{ satellite coupling})$; 144.97; 15.50. HRMS (EI): calculated for C₄ $^{13}CH_6Se_3$ (M⁺): 304.8011; found: 304.8013.

2,2'-[¹³C]-Tetramethyltetraselenafulvalene ($\underline{5}$) (2,2'-[¹³C]-4,4',5,5' tetramethyl $\Delta^{2,2'}$ -bis-1,3-diselenole)

Freshly distilled triethyl phosphite (2.0 mL; 1.9 g; 12 mmol) was added to a refluxing solution of <u>4</u> (1.92 g; 6.3 mmol) in toluene (25 ml). Reflux was continued for 1 h, and the mixture was cooled in an ice/water bath. The product was filtered, washed with ether and dried. Yield: 0.87 g (61%) of purple crystals. ¹H-NMR (250 MHz; CDCl₃) δ : 1.98 (s; 6 H). ¹³C-NMR (63 MHz; CDCl₃) δ : 127.13 (¹³C–Se satellite coupling); 103.53 (¹³C = ¹³C); 77.09 (¹³C–Se satellite coupling); 15.99. HRMS (EI): calculated for C₈ ¹³C₂H₁₂Se₄ (M⁺): 451.7683; found: 451.7658.

Acknowledgements

We would to thank CEA-Grenoble for financial support to Gael Paquignon and for a generous gift of ${}^{13}CH_2Cl_2$. Ms Stine Elle and Mr Mikkel Andreassen are thanked for graphical assistance.

References

- 1. Jerome D. J Phys IV 2000; 10: 69.
- 2. Jerome D, Mazaud A, Ribault M, Bechgaard K. J Phys Lett (Orsay, France) 1980; 41: 95.
- Bechgaard K, Carneiro K, Rasmussen F, Olsen M, Rindorf G, Jacobsen CS, Pedersen HJ, Scott JC. J Am Chem Soc 1981; 103: 2440.
- Barthel E, Quiron G, Wzietek P, Jérome D, Christensen JB, Jørgensen M, Bechgaard K. *Europhys Lett* 1993; 21: 87.
- 5. Barthel E, Kriza G, Quiron G, Wzietek P, Jérome D, Christensen JB, Jørgensen M, Bechgaard K. J Phys (Paris) IV 1993; **3**: 231.
- Barthel E, Quiron G, Wzietek P, Jérome D, Christensen JB, Jørgensen M, Bechgaard K. Synth Met 1993; 55–57: 2581.
- 7. Barthel E, Kriza G, Quiron G, Wzietek P, Jérome D, Christensen JB, Jørgensen M, Bechgaard K. J Phys (Paris) I 1993; **3**: 1501.
- 8. Barthel E, Kriza G, Quiron G, Wzietek P, Jérome D, Christensen JB, Jørgensen M, Bechgaard K. *Phys Rev Lett* 1993; **71**: 2825.

Copyright © 2001 John Wiley & Sons, Ltd. J Labelled Cpd Radiopharm 2001; 44: 1035-1041

- 9. Chow DS, Zamborszky F, Alavi B, Tantillo DJ, Baur A, Merlic CA, Brown SE. *Phys Rev Lett* 2000; **85**: 1698.
- 10. Merlic CA, Baur A, Tantillo DJ, Brown SE. Synth Commun 1999; 29: 2953.
- 11. Christensen JB, Jørgensen M, Bechgaard K. Unpublished work.
- 12. Bechgaard K, Cowan DO, Bloch AN. J Org Chem 1975; 40: 746.
- 13. Engler EM, Patel VV. J Am Chem Soc 1974; 96: 7376.
- 14. Henriksen L, Kristiansen ES. Int J Sulfur Chem Part A 1972; 2: 13.
- Brereton MP, Cooper MK, Dennis GR, Ritchie GLD. Aust J Chem 1981; 34: 2253.
- 16. Pan W-H, Fackler JP Jr, Chen H-W. Inorg Chem 1981; 20: 856.